8 research outputs found

    Impact of Etna’s volcanic emission on major ions and trace elements composition of the atmospheric deposition

    Get PDF
    Mt. Etna, on the eastern coast of Sicily (Italy), is one of the most active volcanoes on the planet and it is widely recognized as a big source of volcanic gases (e.g., CO2 and SO2), halogens, and a lot of trace elements, to the atmosphere in the Mediterranean region. Especially during eruptive periods, Etna’s emissions can be dispersed over long distances and cover wide areas. A group of trace elements has been recently brought to attention for their possible environmental and human health impacts, the Technology-critical elements. The current knowledge about their geochemical cycles is still scarce, nevertheless, recent studies (Brugnone et al., 2020) evidenced a contribution from the volcanic activity for some of them (Te, Tl, and REE). In 2021, in the framework of the research project “Pianeta Dinamico”, by INGV, a network of 10 bulk collectors was implemented to collect, monthly, atmospheric deposition samples. Four of these collectors are located on the flanks of Mt. Etna, other two are in the urban area of Catania and three are in the industrial area of Priolo, all most of the time downwind of the main craters. The last one, close to Cesarò (Nebrodi Regional Park), represents the regional background. The research aims to produce a database on major ions and trace element compositions of the bulk deposition and here we report the values of the main physical-chemical parameters and the deposition fluxes of major ions and trace elements from the first year of research. The pH ranged from 3.1 to 7.7, with a mean value of 5.6, in samples from the Etna area, while it ranged between 5.2 and 7.6, with a mean value of 6.4, in samples from the other study areas. The EC showed values ranging from 5 to 1032 μS cm-1, with a mean value of 65 μS cm-1. The most abundant ions were Cl- and SO42- for anions, Na+ and Ca+ for cations, whose mean deposition fluxes, considering all sampling sites, were 16.6, 6.8, 8.4, and 6.0 mg m-2 d, respectively. The highest deposition fluxes of volcanic refractory elements, such as Al, Fe, and Ti, were measured in the Etna’s sites, with mean values of 948, 464, and 34.3 μg m-2 d-1, respectively, higher than those detected in the other sampling sites, further away from the volcanic source (26.2, 12.4, 0.5 μg m-2 d-1, respectively). The same trend was also observed for volatile elements of prevailing volcanic origin, such as Tl (0.49 μg m-2 d-1), Te (0.07 μg m-2 d-1), As (0.95 μg m-2 d-1), Se (1.92 μg m-2 d-1), and Cd (0.39 μg m-2 d-1). Our preliminary results show that, close to a volcanic area, volcanic emissions must be considered among the major contributors of ions and trace elements to the atmosphere. Their deposition may significantly impact the pedosphere, hydrosphere, and biosphere and directly or indirectly human health

    Qualità dell’aria: il Fuzzy Environmental Analogy Index Model (FEAIM) per valutare l’idoneità delle stazioni ai fini modellistici

    No full text
    Tutte le attività volte a studiare le cause primarie e gli effetti dell’inquinamento atmosferico richiedono l’impiego di una rete di monitoraggio della qualità dell’aria ottimizzata per la valutazione dell’esposizione dei bersagli recettori agli effetti degli inquinanti aerodispersi. Nell’ambito di una collaborazione tra ARPA Sicilia e il Dipartimento di Ingegneria dell’Università di Palermo, sono state condotte ricerche per sviluppare una metodologia innovativa utile per ottimizzare l’assetto delle reti di monitoraggio della qualità dell’aria su scala regionale. L’approccio metodologico si fonda su un nuovo indice, chiamato indice di analogia ambientale del territorio (FEAI), basato sulla teoria degli insiemi sfumati - fuzzy. FEAI è dedotto combinando due indici: l’indicatore di pressione meteorologica (MPI) e l’indicatore di pressione antropica (API). MPI permette di studiare, per il territorio esaminato, analogie orografiche e meteorologiche (in particolare anemologiche) tra aree diverse al fine di confrontarne il funzionamento fluidodinamico nello strato basso della troposfera; API ha la funzione di indicizzare gli impatti legati a fonti antropiche o naturali su scala regionale, permettendo di mettere a confronto le pressioni su zone limitate appartenenti alle medesime aree funzionali (agglomerati urbani, agglomerati industriali, altre zone). Il modello FEAIM è stato applicato all’analisi della rete della Regione siciliana. I risultati ottenuti hanno permesso di confermare la capacità dell’indice FEAI di indagare le somiglianze tra le aree limitrofe, in termini di pressioni ambientali dovute a fonti antropiche e naturali. Inoltre, ha consentito di mettere in evidenza nuovi aspetti di funzionamento della rete e confermarne altri che già da tempo si erano manifestati, come evidenze empiriche, nelle attività di monitoraggio della qualità dell’aria

    Mount Etna volcanic emissions signature on the chemical composition of bulk atmospheric deposition in Sicily, Italy.

    No full text
    Mt. Etna, on the eastern coast of Sicily (Italy), is one of the most active and most intensely monitored volcanoes on the Earth, widely recognized as a big source of volcanic gases, such as CO2, SO2, halogens, and many trace elements, including technological critical elements (TCEs), to the atmosphere on a regional and global scale. Mt. Etna emissions account for a significant percentage of the worldwide average volcanic budget and especially during eruptive periods, its products can be dispersed over great distances and they influence the chemical composition of the atmosphere of other continents too. The current knowledge about the geochemical cycle of TCEs is still scarce, nevertheless, recent studies [Brugnone et al., 2020], evidenced a contribution from the volcanic activity for some of them (Te, Tl, and REE). Here we report the arithmetic mean of the volume-weighted mean concentration values of each sampling site of both volcanic gas-derived anions SO42-, Cl-, and F-, and of some TCEs (i.e. Te and Tl). These were determined on bulk deposition samples collected, on monthly basis, during three different research projects: (1) SEW, from July 2017 to July 2018; (2) CISAS, from June 2018 to June 2019; (3) HEAVEN, which started in March 2021 and still ongoing. All the samples were analysed for major ion contents and many trace elements by IC, ICP-OES, and ICP-MS. During the first project, samples were acquired with 3 bulk collectors, located on the eastern slope of Etna, i.e., the slope toward which the volcanic emissions are usually dispersed by the prevalent regional winds. During this period, Etna showed ordinary outgassing activity and occasional ash emissions. Volume-weighted-mean (VWM) concentrations of 3.37, 6.87, and 0.48 mg L-1 were measured for SO42-, Cl-, and F- respectively (maxima up to 12.74, 44.80, and 2.55 mg L-1, respectively). High concentrations of Te and Tl were measured especially at the sampling sites closest to the central craters (VWM 0.012 µg L-1 and maximum 0.129 µg L-1 for Te; VWM 0.122 µg L-1 and maximum 0.978 µg L-1 for Tl). During the CISAS project, atmospheric bulk depositions were collected through a network of 11 bulk collectors, which were installed in the area of Siracusa, a town on the east coast of Sicily, about 80 km SSE of Mt. Etna, and in Milazzo, a town on the northern coast of Sicily, about 55 km NNE of Mt. Etna. Between 24-30 December 2018, a major eruption of Etna occurred, characterized by lava fountains and ash emissions. The samples collected in the study area of Siracusa during the period straddling the eruptive event were characterized by high concentrations of SO42- (up to 6.68 mg L-1), Cl- (up to 19.00 mg L-1), and F- (up to 0.88 mg L-1). In the same samples, the maximum concentrations were 0.025 µg L-1 and 0.164 µg L-1 for Te and Tl, respectively, showing values one order of magnitude higher than the median concentrations measured in the samples of the other monitoring campaigns carried out in the same study area. The study area of Milazzo, due to the prevailing winds from the North direction during the period of the eruption, has not been affected by the volcanic plume, and therefore the signature of the eruption was not visible in the samples collected in that area. From March 2021 atmospheric bulk deposition samples were collected through a network of 10 bulk collectors, which were installed on Mt. Etna, at various distances from the summit craters and on different slopes of the volcano, near the city of Catania, in the Siracusa area and near the village of Cesarò, in the Nebrodi Natural Regional Park. Mt Etna experienced two long sequences of 53 short-living lava fountain episodes between December 2020 and March 2021 and April to October 2021. Other episodes occurred more recently, between February and May 2022. Volcanic emissions associated with these paroxysmal events have been dispersed over great distances, even reaching other continents (e.g., Asia), and have been important contributors to the chemical composition of atmospheric deposition at all monitoring sites during the first year of the research. VWM concentrations of 3.26 mg L-1 (maximum 189.60 mg L-1), 5.78 mg L-1 (maximum 244.60 mg L-1), and 0.43 mg L-1 (maximum 40.66 mg L-1) were recorded for SO42-, Cl-, and F-, respectively. High concentrations of Te and Tl were also recorded, especially at sites closer to the central craters of Mt. Etna, with VWM concentrations of 0.018 µg L-1 and 0.121 µg L-1 and values up to 0.369 µg L-1 and 2.101 µg L-1, respectively. Based on our finding, we highlight that volcanic emissions must be considered among the major contributors to the chemistry of the atmospheric bulk deposition in sites close to active volcano emissions, but also at considerable distances from the vents during high-magnitude eruption events

    The impact of Mt. Etna volcanic emissions on the atmospheric deposition: developments and improvements during three decades of studies

    No full text
    Volcanic emissions are an important source of gases and particles to the atmosphere. Mount Etna discharges a permanent volcanic plume consisting of water vapor and gaseous species (CO2, SO2, HCl and HF, mainly), metals, acid droplets, and solid particles. This plume interacts with meteoric water during precipitations events, so the chemical signature of the plume is impressed on the rainwater. Over the past 32 years, the impact of Etna's emissions on atmospheric deposition has been investigated in many research projects by our team. Sampling methodologies and analytical procedures have been improved over the years. The first study of the concentration of water-soluble inorganic ions in weekly wet-only atmospheric deposition was carried out between December 1990 and December 1991 Between 1997 and 2003 the same analyses together with the isotopic composition of the water (δ18O) were made in monthly bulk atmospheric depositions. The first determination of the concentration of trace metals in Etna's atmospheric bulk deposition was first carried out between 2006 and 2007 and subsequently between 2017 and 2018. In the framework of the project HEAVEN, started in March 2021 and still ongoing, we aim to determine for the first time Technology Critical Elements (TCEs) in Etna's atmospheric bulk deposition, as well as concentration of water-soluble and insoluble inorganic ions, and trace metals. Less soluble elements attached to particulate matter, often neglected in similar studies, will also be investigated. In addition to the isotopic composition of oxygen and hydrogen (δ18O and δD), the isotopic signature of B (δ11B) and Sr (87Sr/86Sr) will also be determined for the first time in Mt Etna’s plume. Coupling new data, with the long historical series of studies will allow us to characterize the environmental impact of Etna’s volcanic activity and constitute a precious point of reference for similar studies on other volcanoes of the world

    Major and trace elements characterization of atmospheric deposition in volcanic, urban, and industrial areas of Sicily (Italy): preliminary results

    No full text
    The source of chemical elements dissolved in rainwater can be both natural and anthropogenic. A group of trace elements has been recently brought to attention for their possible environmental impacts, the Technology-critical elements (TCEs). The current knowledge about the geochemical cycle of TCEs is still scarce, nevertheless recent studies [e.g. Brugnone et al., 2020] evidenced a contribution from the volcanic activity for some of them (Te, Tl, and REE). Our research aims to produce a geochemical database on major and trace element depositions in different areas of Sicily: a volcanic area (Etna), two urban areas (Palermo, Catania), two industrial areas (Milazzo, Priolo), and a rural monitoring site (Cesarò). The samples are collected monthly through a network of 15 bulk collectors. Here we report about the chemical composition of rainwater from the first five sampling campaigns. The pH was between 5.5 and 7.8, with an average value of 7.0. EC showed values ranging from 8 to 184 μS/cm, with an average of 72 μS/cm. The most abundant major elements were Cl- and SO42- for anions, Ca+ and Na+ for cations. Regarding trace elements, the highest volume-weighted mean (VWM) concentrations were generally measured in the areas affected by volcanic emissions, especially for TCEs, such as Te and Tl, which show VWM concentrations of 4.5 ng/L and 50.8 ng/L, respectively, higher than the VWM values detected in samples far from the volcanic source (0.8 ng/L and 2.5 ng/L, respectively). Exceptions are Zn and Br with the highest VWM concentration found in the Priolo area, Cr and Fe in Palermo. The contribution of the various sources, including the volcanic one, can therefore be well evidenced through the characterization of the chemical composition of the atmospheric deposition

    An Epidemiological Study to Investigate Links between Atmospheric Pollution from Farming and SARS-CoV-2 Mortality

    No full text
    Exposure to atmospheric particulate matter and nitrogen dioxide has been linked to SARS-CoV-2 infection and death. We hypothesized that long-term exposure to farming-related air pollutants might predispose to an increased risk of COVID-19-related death. To test this hypothesis, we performed an ecological study of five Italian Regions (Piedmont, Lombardy, Veneto, Emilia-Romagna and Sicily), linking all-cause mortality by province (administrative entities within regions) to data on atmospheric concentrations of particulate matter (PM2.5 and PM10) and ammonia (NH3), which are mainly produced by agricultural activities. The study outcome was change in all-cause mortality during March-April 2020 compared with March-April 2015-2019 (period). We estimated all-cause mortality rate ratios (MRRs) by multivariate negative binomial regression models adjusting for air temperature, humidity, international import-export, gross domestic product and population density. We documented a 6.9% excess in MRR (proxy for COVID-19 mortality) for each tonne/km2 increase in NH3 emissions, explained by the interaction of the period variable with NH3 exposure, considering all pollutants together. Despite the limitations of the ecological design of the study, following the precautionary principle, we recommend the implementation of public health measures to limit environmental NH3 exposure, particularly while the COVID-19 pandemic continues. Future studies are needed to investigate any causal link between COVID-19 and farming-related pollution

    Digital Modernism Heritage Lexicon

    No full text
    The book investigates the theme of Modernism (1920-1960 and its epigones) as an integral part of tangible and intangible cultural heritage which contains the result of a whole range of disciplines whose aim is to identify, document and preserve the memory of the past and the value of the future. Including several chapters, it contains research results relating to cultural heritage, more specifically Modernism, and current digital technologies. This makes it possible to record and evaluate the changes that both undergo: the first one, from a material point of view, the second one from the research point of view, which integrates the traditional approach with an innovative one. The purpose of the publication is to show the most recent studies on the modernist lexicon 100 years after its birth, moving through different fields of cultural heritage: from different forms of art to architecture, from design to engineering, from literature to history, representation and restoration. The book appeals to scholars and professionals who are involved in the process of understanding, reading and comprehension the transformation that the places have undergone within the period under examination. It will certainly foster the international exchange of knowledge that characterized Modernism
    corecore